Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Bernardi et al. Journal of Great Lakes Research

May 30, 2024
Fig. 4. Histograms representing the cumulative amounts of isochores of the genomes of Oreochromis niloticus and Oreochromis Alcolapia grahami. The red rectangles highlight the GC-rich region of the genome for both species.

Giacomo Bernardi, Geraldine D. Kavembe b, Harold L. Bergman, Giuseppe Bucciarelli, Chris M. Wood. 2024. The genome organization of the Lake Magadi tilapia, Oreochromis Alcolapia grahami, a cichlid extremophile. Journal of Great Lakes Research

Abstract
The genome of vertebrates is made of a mosaic of long stretches of DNA, called isochores, which are compositionally uniform, and belong to a few families of GC-poor (L1 and L2) and GC-rich (H1, H2, and H3) components. Poikilotherms tend to have GC-poor genomes, while endotherms comprise both GC-poor and GC-rich isochores. The thermal theory claimed that temperature and natural selection played an active role in favoring GC-rich genomic regions, yet empirical evidence was difficult to obtain. Early work based on cesium chloride ultracentrifugation gradients showed that the Lake Magadi tilapia, a hot-water adapted fish species, displayed GC-rich regions that were absent from a close relative that lives in colder water. The goal of this study was to revisit the original study using full genome sequencing. We found that the original GC-rich regions are indeed present, that they are interspersed in the genome. Indeed, when comparing Lake Magadi tilapia with the temperate Nile tilapia, we found that 59.3 % of the genome of Lake Magadi tilapia had a base composition higher than 40 %GC, as opposed to 55.3 % of the genome of the Nile tilapia having a base composition higher than 40 % GC. We also found that their genomes comprised similar amounts of repetitive elements (20 % and 19.5 %, respectively) indicating that the shifts in base composition might not be due to repetitive elements. Further work on repetitive element analyses, protein coding genes and additional hot-water adapted fishes will provide clues as to the origin of GC-rich isochores in Lake Magadi tilapia.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility